Digital Signal Processing

module title module code	level of module		year of study	semester/trimester when the module is delivered	
Digital Signal Processing EN-SpIC 504-6	1 st (Undergraduate)		3 rd	FALL	
Name / e-mail of lecturer(s)	Weekly	Hours	FCTS	module type	mode of delivery (face to
Prof. Maria RANGOUSSI	Lect.	Lab.		(comp., opt.)	face, distance learning)
(<u>mariar@teipir.gr</u>)	4	2	6	compulsory	face to face
module web Page	http://e g/under processi	lectronio graduat ng/lectu	cstaff.te e-course ures.htm	ipir.gr/rangous es/digital-signal I	si/index.php/en/teachin _
learning outcomes	 http://electronicstaff.teipir.gr/rangoussi/index.php/en/teachin g/undergraduate-courses/digital-signal- processing/lectures.html Upon successful completion of the course, the student possesses advanced knowledge, skills and competences that enable him/her to: Describe general and specific DSP processes by block diagrams. Select the appropriate form of digital system description, among alternatives, for the problem at hand. Perform spectral analysis of digital signals and systems using simulation tools for the computation of the digital output signal. Interpret the results of spectral analysis of digital signals and systems, so as to conclude on their characterization and classification. Analyze signal processing problems under realistic application scenarios (processing of audiovisual / biomedical / telecom signals) and compose solutions (design digital systems) on the basis of methods taught in the course. Collaborate with fellow students in a team, in order to thoroughly address complex DSP problems (analysis – synthesis) and to critically evaluate alternative solutions, leading to decisions as to the feasibility of hardware implementations. 				

prerequisites and co- requisites:	None	
recommended optional		
programme components		
module description	Lectures	
	UNIT I: Introduction	
	 General placement of the DSP subject in the field of study of the electronics and telecommunications engineer. Survey of major modern DSP applications, with emphasis on telecoms. Placement of the DSP course and connections with previous and next semester courses. Basic mathematics background revisited (Laplace, Z and Fourier Transforms and Inverses). Discrete-time versus continuous-time signals and systems. Discrete Fourier Transform and Inverse, properties. Simulation and graphics display of discrete-time signals and systems in Matlab. 	
	UNIT II: A-to-D and D-to-A conversion	
	 Fundamental theorems and methods, electronic circuits, survey of contemporary hardware available (A/D and D/A convertors, DSP boards) and selection criteria. Introduction to A/D and D/A devices and systems using modern hardware; application to speech and audio signals. Experimental acquaintance with the fundamental characteristics of A/D conversion and their impact on digital signal quality. 	
	UNIT III: Elementary DSP functions and properties	
	 Instrumental DSP functions and their properties: convolution, (auto-)correlation); methods for their computation in the time and the frequency domains. Use of simulation software for the computation and representation of the correlation and the convolution of digital signals / systems. 	
	UNIT IV: The Discrete Fourier Transform (DFT) and its fast implementations (FFT)	
	1. Discrete Fourier Transform, Fast Fourier Transform fundamentals. Algorithms for their computation and algorithmic complexity. Hardware implementations.	

l	JNIT V: Linear Prediction
1	 Introduction of the central notion of linear prediction in discrete-time systems, through the solution of linear problems of special forms. Prediction error and optimal prediction. System modeling.
ι	JNIT VI: Modern Spectral Analysis
1	 Modern spectral analysis, parametric and non-parametric Spectral analysis of stationary and quasi-stationary signals: Fourier-based methods, examples. Spectral analysis of non- stationary signals: time-frequency and time-scale representations, examples. Experimental application of spectral analysis methods in real signals, stationary or not. Use of simulation software for the representation of the spectra in order to comparatively evaluate the quality of the results.
l	JNIT VII: Introduction to digital filter design
2	 Major design methods for FIR and IIR filters. Window functions and windowing. Introduction to adaptive digital filters. Design and application of digital filters in specific speech and audio processing scenarios. Experimental acquaintance with digital filters design and comparative evaluation of the quality of the results.
	aboratory
1 2 3 4 5 6 7 8 9 1	 TMS320C5505 Digital Signal Processor and the Integrated Development Environment "Code Composer Studio v.5" of Texas Instr. Inc. Echo and reverberation Sine waves generation Alien voices generation Dual tone multi-frequency signal generation Comb digital filters FIR digital filters IIR digital filters Adaptive filters applied to active noise reduction (ANR).

recommended or required	Essential reading		
bibliography:	1. HAYES, M., Digital Signal Processing	g, Schaum's Outline	
	Series, 2nd Edition, Paperback 201	1.	
	2. OPPENHEIM, A.V., SCHAFER, R.W.,	BUCK, J.R., Discrete-	
	Time Signal Processing, Prentice-Ha	all, 1999.	
	3. PROAKIS, G., MANOLAKIS, D., Digit	al Signal Processing,	
	Prentice-Hall, 3rd. ed., 1996.		
	4. TMS320C5505 USB Stick Teaching I	Materials, Texas	
	Instruments – University Programn	ne, 2010.	
	Recommended Books		
	1. HAYKIN, S., Adaptive Filter Theory, 4th Edition, Prentice- Hall, 2001.		
	2. PORAT, B., A course in Digital Signa	l Processing, Wiley,	
	 PROAKIS, J., RADER, C.M., LING, F., NIKIAS, C.L., Advanced Digital Signal Processing. McMillan, New York, 1992 		
	4. KALOUPTSIDIS, N., THEODORIDIS, S	S., Adaptive System	
	Identification and Signal Processing	g Algorithms, Prentice-	
	Hall Intl., UK, 1993.		
	5. PORAT, B., Digital Processing of Rai	ndom Signals, Prentice-	
	Hall, New Jersey, 1994.		
	6. GOLD, B., MORGAN, N., Speech and Audio Signal		
	Processing, Wiley, 2000.		
	7. QUATIERI, T. F., Discrete-time Spee	ech Signal Processing,	
	Prentice-Hall, 2000.	aduation to Disital	
	8. RABINER, L.R., SCHAFER, R.W., INIT	ronds in Signal	
	Processing 2007	renus in Signai	
	110cessing, 2007.		
planned learning activities	Learning Activities Plan		
and teaching methods:			
5	Learning activity	Load (hours)	
	Lectures	52	
	Laboratory experiments	26	
	Student technical report on lab part	32	
	Student technical report on lecture	30	
	part (possibly as a team member)		
	Study and preparation for exam	40	
	TOTAL COURSE LOAD	180	
	Teaching Methods Employed		
	• Face to face teaching with the aid of	of power-point	

	transparencies and multimedia (audio) material.
	• Simulation software for the simulation of digital processes
	in the lab.
	 Integrated Development Environment Software of the
	programming and running of applications on the TMS DSP
	dedicated bardware in the lab
	Teaching support and study material (lastum notes lab
	• reaching support and study material (lecture notes, lab
	notes, solved examples, solved past exams) through the
	course webpage.
	• Electronic communication with the students enrolled in the
	course, through the course webpage.
assessment methods and	Final course grade =
criteria:	Lectures part grade x 60% + Laboratory part grade x
	40%, analyzed as follows:
	Final written exam covers all taught material. During the exam,
	students may consult a list of formulae provided by the
	examiner as a reminder. Students must prove mastery of the
	material through stating and interpreting definitions of all
	quantities, handling relations among quantities and solving of
	design problems based on specs.
	Lectures part grade:
	Homework assignments – 2 per semester (20%)
	Final written exam – 2 hours (80%)
	Final written exam covers all taught material. During the exam,
	students may consult a list of formulae provided by the
	examiner as a reminder. Students must prove mastery of the
	material through stating and interpreting definitions of all
	quantities, handling relations among quantities and solving of
	design problems based on specs.
	Laboratory part grade:
	Participation in all lab experiments and oral evaluation – (20%)
	Mid-term written test (40%)
	End-term written test (40%)
language of instruction:	English
—	